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Synthesis of a 28-mer oligosaccharide core
of Mycobacterial lipoarabinomannan (LAM) requires only two

n-pentenyl orthoester progenitors
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Abstract—Regioselective glycosidation of acceptor polyols greatly reduces the number of orthogonal protecting groups that are normally
required for conventional syntheses of highly branched oligosaccharides. The MATCH between a donor and one of the many-OHs is the
basis of a simple, ready synthesis of the 28-mer oligosaccharide described in this manuscript. The strategy relies heavily upon the unique
interplay between n-pentenyl orthoesters (NPOEs), n-pentenyl glycosides, ytterbium triflate, and N-iodosuccinimide which allows exqui-
site, high-yielding regio- and chemoselective glycosylations. The NPOEs, effective as mannose or arabinose donors, are the sole sources
of all saccharide components of the lipoarabinomannan oligosaccharide. Once considerable systematic research had been invested, the 12-
mer mannan, 92, and 16-mer capped arabinan, 91, domains can be rapidly assembled in 300 mg and 1 g quantities, respectively, using
conventional laboratory equipment. The 28-mer, 93 (MW = 11122.54) is, as far as we are aware of, the largest hetero-oligosaccharide
that has been synthesized.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Oligosaccharide synthesis is no longer the fringe activity
that it was in 1982, when Paulsen reviewed the field.1

In the 18 pages of that article, the main donors discussed,
were glycosyl bromides and chlorides, 1 (LVG = Br and
Cl). Although thioglycosides had been introduced by
Ferrier years earlier,2 ‘sulfur-containing leaving groups’
were covered in ten lines. Glycosyl imidates, 1 (LVG =
O(Me) = NMe), had just been introduced by Sinaÿ
et al.,3 and Schmidt’s seminal improvements had not yet
taken hold.4 Of the three selectivities depicted in the funda-
mental process of oligosaccharide synthesis summarized in
Scheme 1, stereoselectivity was the only one that received
concentrated study, the options available being neighbor-
ing group participation, use of soluble or insoluble silver
salts, and halide ion catalysis.

Given this small data base relating to Scheme 1, it may
have seemed judicious for Paulsen to have warned that ‘it
should be emphasized that each oligosaccharide synthesis
remains an independent problem, whose resolution re-
quires considerable systematic research and a good deal
of know how. There are no universal reaction conditions
for oligosaccharide synthesis’.
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Scheme 2. Armed and disarmed concept in glycosyl couplings as initially
described with n-pentenyl glycosides.
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electivities in glycosyl couplings.
However, in spite of the burgeoning number of options5 for
LVG in 1, that caveat remains valid two decades later.
Thus a behind-the-scenes look at the spectacular achieve-
ments of oligosaccharide syntheses, whether solution,6

solid phase,7 automated,8 or programmed,9 will reveal that
‘considerable systematic research’ had gone into the activ-
ity. The same holds even for Nishimura’s elegant chemo-
enzymatic automated procedures.10

The apparent simplicity of coupling 1 with 2 disguises the
fact that the process involves three of the four selectivities,
namely chemo, stereo, and regio, that, according to
Trost,11 confront general organic synthesis, The fourth,
enantioselectivity, is usually irrelevant since for most
targets, the configurations of 1 and 2 are dictated by
nature.
The bond being formed in 3 is subject to chemo- and ste-
reocontrols. Since Isbell’s seminal paper in 1940,12 the
major stereocontrolling implement has been the protecting
group at O2 of the donor. That trend continues as apparent
from the recent examples (a) from Boons’ laboratory,
where anomeric stereoselectivity is controlled by the chiral-
ity of an O2 ether substituent13 and (b) Demchenko’s use of
2-O-picolyl STaz donors to control for b selectivity.14

1.1. Protecting groups do more than protect

Isbell’s insight anticipated present awareness that protect-
ing groups affect all three selectivities of the reaction in
Scheme 1. That protecting groups do more than protect
was impressed upon us in 1988, with the story summarized
in Scheme 2. Individually, the n-pentenyl glycosides
(NPGs) 4 and 5 served as perfectly good donors toward
an acceptor.15 However, when forced into competition, as
in Scheme 2, the erstwhile donor 5 was forced to become
an acceptor to 4 with the result that the cross-coupled
product 6, was formed, sometimes to the exclusion of the
self-coupled alternative 7.16 Donors 4 and 5 were said to
be ‘armed’ and ‘disarmed’, respectively, in view of their
roles in Scheme 2.
Notably, in the original meaning, the ‘disarmed’ unit of
product 6 could be changed to an ‘armed’ entity so as to
readily serve as a glycosyl donor.16

The deactivating effect of esters versus ether protecting
groups upon sugars had been noted in Paulsen’s article.1

But the first demonstration that these differences could be
exploited for synthetic advantage was made with n-penten-
yl glycosides.16 The armed/disarmed principle has been
extended to many other donors,17 and continues to inspire
mechanistic investigation.18 The concept is now presented
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in text books,19 and has become so embedded in the fabric
of carbohydrate chemistry that, 20 years later, citations are
usually omitted.

The above demonstration of chemoselectivity in oligo-
saccharide synthesis (Scheme 2), was quickly followed by
another which is based on the ‘disarming’ effect of widely
used cyclic acetal protecting groups.20 The latter effect,
which is described as ‘torsional armed/disarmed strategy’
to distinguish it from the electronic modality (Scheme 2),
has proved pivotal in the scholarly route to b-mannosides
developed by Crich.21

1.2. The n-pentenyl family of glycosyl donors

In view of the foregoing, it is appropriate to describe some
features of the n-pentenyl family of glycosyl donors.

Glycosyl orthoesters such as 10 can be readily prepared
from an aldohexose in three steps, as indicated in
Scheme 3. Interestingly, the first compound of this type
was isolated by Fischer et al. in 1920,22 although it took
a decade23 for its structure to be elucidated. Since then,
glycosyl orthoesters have been used extensively to prepare
trans-1,2-glycosides by acid catalyzed rearrangement (e.g.,
10! 11). The disarmed donor, 11, so obtained can then
be readily converted into the armed counterpart, 12.

The advent of n-pentenyl chemistry24 added a dimension to
the capability of glycosyl orthoesters, that Kotchetkov, the
major exponent of glycosyl orthoester chemistry, had
found wanting.25 Thus the n-pentenyloxy moiety (a) could
not only be transferred to the anomeric center by the nor-
mal rearrangement, 10! 11, but (b) could be extricated
via the furanylium ion, 13, into the halomethyl furan 14,
so that an in situ acceptor, 17, would not face competition
in providing a new glycoside 18.
Of course the latter, 18, could alternatively have been ob-
tained from the disarmed donor 11 via the oxocarbenium
ion 16, but the low reactivity sometimes causes iodo-alk-
oxylation of the double bond of disarmed 11. Such prod-
ucts are never obtained with NPOEs.
2. Regioselectivity

However, protecting groups are a necessary evil, and the
menace they pose can be seen for the branched target
23 (Scheme 4). For a polyol such as 19, the standard
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procedure would be to install ‘permanent’ protecting
groups (usually benzyls) in 20 on the hydroxyl groups
which are of no interest, and ‘temporary’ orthogonal
groups, P1 and P2, in 21. This preemptive protocol is
designed to ensure that only one-OH is exposed and
presented to each donor at the required time.

However, the selective installation and removal of P1 and
P2 not only adds steps, but enhances anxiety, because as
the size of a synthetic oligosaccharide grows, P1 and P2

can become immersed in a sea of ‘permanent’ protecting
groups, which can induce uncharacteristic responses.

Regioselective glycosidation would obviate the need for
orthogonal protecting groups, leading stepwise from
20! 24! 23.

Our interests in this possibility emanated from the recent
observations in our laboratory summarized in Scheme
5a.26 In the hope of achieving selective glycosidation of
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the equatorial-OH, we treated diol 25 with the armed
n-pentenyl donor 26. However, the major product was
the mixture of a/b glycosides 27 from glycosidation at
the axial-OH. We surmised that the corresponding
disarmed donor, 29, would improve a anomeric stereose-
lectivity because of neighboring group participation; but
most surprisingly, the only product was now the disaccha-
ride 30 from glycosidation at the equatorial-OH.

From Scheme 3, it is seen that NPOE 10 and NPG 11 lead
to the same manifold of intermediates, 15 and 16. Accord-
ingly, we found that NPOE 28 also gave disaccharide 30
exclusively indeed with the improved yield of 73%.

The observed regioselectivity could not be justified by
evoking any permutation of the usual steric and/or reactiv-
ity considerations. Thus with regard to donor reactivity,
our laboratory has developed procedures for quantitatively
determining the relative reactivity of n-pentenyl donors.27

The ranking is: 28��� 26 > 29. Thus, the most and least
reactive donors display the same regioselectivity for the
equatorial-OH of 25.
2.1. The concept of MATCH

The anomalies in Scheme 5a caused us to revisit the
concept of MATCH between a donor and an acceptor
that had been expressed by Paulsen 30 years ago,28 to re-
flect the wisdom gained in the minefield of early oligosac-
charide synthesis. Extensive experience had taught Paulsen
that poor yield from a given donor/acceptor pair could be
improved by switching donors. An ‘explanation’ for such
MATCH was not offered—but its validity emerged from
trial and error experiments in keeping with the best
traditions of classical, experimental synthetic organic
chemistry.

However, the concept of MATCH as introduced by Paul-
sen,28 referred to the yield in the reaction of one donor/
acceptor combination versus another. The issue of regio-
selectivity was not considered. Indeed the issue was not
raised systematically for another 20 years.29

In an exquisite demonstration of MATCH induced
regioselectivity, diol 25 was presented to both donors
NPOE 31 and NPG 26, in an in situ, three component
competitive milieu26 (Scheme 5b). Only one pseudotrisac-
charide, 32, of the four possibilities was obtained, in which
each donor had gone to its preferred-OH as seen in
Scheme 5a.

Several other diols have been tested and found to exhibit
MATCH for NPOEs versus armed NPGs. The tabulated
two-component results for the diastereomers 33–35 shown
in Scheme 5c, are typical. In two-component reactions, one
of the –OH groups, is favored by the NPOE, and the other
by armed NPG. Three-component, in situ double glycosi-
dations have also been observed for these diols, and in
the case of 35, impressive optimizations of the lone trisac-
charide formed, provide powerful support for the concept
of MATCH.30
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2.2. Primary versus secondary hydroxyls

As noted above, the regioselectivities in Scheme 5a could
not be rationalized on the basis of the usual criteria such
as steric hindrance. We decided to test regioselective
MATCH with the pair of butane diacetal31 primary/sec-
ondary diols, 36 and 41.32 The results in Scheme 6 show
that the NPOE, 37, is exquisitely selective for the pri-
mary-OHs in both cases, giving 38 and 42, while the armed
thioglycoside, 39, favors the secondary-OH, giving 40 in
slight excess in the case of 36, and exclusively 43 in the case
of 41.32 (It should be noted that thioglycosides and NPGs
exhibit the same regio-preferences.33)
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3. A revolutionary role for lanthanide triflates

Scheme 3 shows that an ‘acid’ is used (a) for NPOE rear-
rangement 10! 11 and (b) to generate iodonium ion (I+)
needed for n-pentenyl activation. Problems were sometimes
encountered with acid sensitive protecting groups on the
substrates, and we hoped that these could be avoided by
the use of lanthanide salts. Indeed we found that several
lanthanide triflates could serve, independently, for (a) the
rearrangement and (b) generation of I+.34

These data must be viewed in the context of Scheme 3. In
the presence of the ‘acid’ and I+, the NPOE, 10, is parti-
tioned between NPG 11 (through loss followed by recap-
ture of the pentenyl-OH), and the furanylium ion 13, the
latter being destined to glycosidate the acceptor-OH.

However, an unexpected benefit came from chemoselective
glycosidations allowed by these salts. Thus, Yb(OTf)3/NIS
was found to induce glycosidation with NPOEs but NOT
NPGs, whereas Sc(OTf)3/NIS induced glycosidation with
both NPOEs and NPGs.35

The highly utilitarian value of this discrimination is dem-
onstrated in Scheme 7a.35 Diol 44 can be treated with ex-
cess NPOE 31 in the presence of Yb(OTf)3/NIS so as to
optimize regioselective monoglycosidation leading to 45
(Scheme 7a). Any disarmed NPG 46 produced, being
refractory to the reaction medium, would not threaten
the free-OH of 45.
However, since Sc(OTf)3/NIS also activates disarmed
NPGs, the reaction in Scheme 7b would lead to substantial
amounts of the double glycosidation product 47.

These lanthanide based chemoselectivities were tested on
several other diols, and the samples collected in Scheme
7b show that the discrimination holds for primary versus
secondary, as well as secondary versus secondary diols.
3.1. Orthogonal Yb(OTf)3-based chemo- and regioselective
glycosylation

Further advantage of lanthanide salts arose from the dis-
covery that although Yb(OTf)3/NIS does not activate
NPGs, it does activate ethyl thioglycosides and trichloro-
acetimidates. Both of the latter donors can be readily ob-
tained from NPOEs or NPGs by protic or oxidative



OBnO

OH

BnO

HO

O

OBnO

OH

BnO

HO

O

O
O

OCOPh

O
O

O
Ph

O

Yb(OTf)3

BnO
O

O
BnO

BnO

OPh

O

NIS

OBnO

OCOPh

BnO

TBDPSO

CCl3

NHO

O

OCOPh

OH

Yb(OTf)3

NIS

DBU

Cl3CCN

OBnO

OH

BnO

O

OBnO

OCOPh

BnO

BnO

O

53 (major)

OBnO

O

BnO

O

OBnO

OCOPh

BnO

TBDPSO

O

OBnO

OCOPh

BnO

TBDPSO

O

OCOPh

SR

O

OCOPh

O

CCl3

NH

OBnO
OCOPh

BnO

TBDPSO

CCl3

NH
O

52

OBnO

OH

BnO

O

O

OBnO

OCOPh

BnO

TBDPSO

OBnO

O

BnO

O

OBnO

OCOPh

BnO

BnO

OBnO

OCOPh

BnO

TBDPSO

O

NPOE

added after
10 min

(a)
thioglycoside

HOAc/aq
  (protic)

  NBS/H2O

  (oxidative)

or

trichloroacetimidateNPG

glycose

NBS/H2O
(oxidative)

standard

48

31 (2 equiv)
50

51  (62%)

(b)

49

(c)

50 (1 equiv)
+

48

Scheme 8. One-pot glycosylation based on Yb(OTf)3 chemoselective couplings.

2454 B. Fraser-Reid et al. / Tetrahedron: Asymmetry 17 (2006) 2449–2463
hydrolysis as shown in Scheme 8a. This behavior toward
Yb(OTf)3 permits the sequential procedure depicted in
Scheme 8b, that blends all three selectivities. Thus the
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corresponding NPOE as illustrated in Scheme 8b, was
added. The a,a linked trisaccharide 51 was obtained in
62% yield.35

In passing we note (a) that phenyl thioglycosides were not
activated by Yb(OTf)3/NIS, this discrimination being in
keeping with early observations of Garegg et al.,36 and
(b) that Adinolfi et al.37 have reported on the use of lantha-
nide triflates to activate trifluoroacetimidate donors.

The importance for donor based selectivity is seen in the
contrast between Scheme 8b and 8c. The use of excess
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NPOE 31 with Yb(OTf)3/NIS gave 49 only. However, with
only 1 equiv of the trichloroacetimidate 50, a mixture of
single and double glycosidation products, 52 and 53 was
given, the latter being the major.
4. Inositol biomolecules

Our interest in inositol biomolecules began with a synthesis
of inositol triphosphate, 54, in 1988.38 In that same year,
n-pentenyl glycosides (NPGs) were discovered,39 and
Ferguson’s elegant structure elucidation of a glycosyl
phosphatidyl inositol (GPI) was reported.40 In light of
the latter coincidence, GPI phosphoinositides became the
foci for developing NPG methodology,41 and that
association was rewarded with (one of) the first total
syntheses of a GPI.42

A tangent led us to the inositol dimannoside 32 (Scheme 5)
from which our above-described concern with regioselec-
tive glycosidation and MATCH emanated. This concept
was the basis of the first syntheses of a malarial GPI,
59,43 and prototypes thereof.44 The retrosynthesis in
Scheme 9 emphasizes the versatility of n-pentenylortho-
esters (NPOEs), upon which we drew further in the studies
below.
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Scheme 12. Key biosynthetic intermediate 65.
5. Tuberculosis

Tuberculosis, which has been one of the world’s most ruth-
less killers for millennia,45 is currently seeing a resurgence
in a multiple drug resistant (MDR)46 and extremely drug
resistant (XDR)47 manifestations that are rendered more
devastating because of their synergy with AIDS.48 The
threats to underprivileged, underserved ‘third world’ popu-
lations is well chronicled,49 and fits with the founding ethos
of the Natural Products and Glycotechnology (epony-
mously NPG) Research Institute as a non-profit agency
for investigating the oligosaccharides of ‘third-world’
diseases.

5.1. Multiple facets of lipoarabinomannans

Brennan has described the cell surface coat of Mycobacte-
rium tuberculosis as a ‘treasure house of unusual com-
pounds’50 and our scientific interest was tweaked by
cartoons 60 and 61 by Chaterjee51 and Puzo52 (Scheme
10) that convey the horrendously complex lipoarabino-
mannan (LAM) surface glycolipid. This glycolipid occupies
a central place in heroic efforts to combat tuberculosis, for
it protects the pathogen against detection,45 thereby inhib-
iting diagnosis in bygone days, until the belated sign of
blood streaked sputum revealed the advanced stage of
the disease. Koch’s breach of LAM in 1882 was a monu-
mental achievement,53 but structure elucidation, even
now still tentative, has had to await recent state-of-the-
art technological developments.54,55

However, M. tuberculosis is only one species of a genus that
includes other infamous pathogens, for example, Mycobac-
terium leprae, Mycobacterium vaccae, Mycobacterium bovi,
and Mycobacterium avium and, on the other hand, clini-
cally used Mycobacterium smegmatis,56 all of which appear
to have the same gross LAM structure. Indeed, cartoons 60
and 61 represent composites derived from structural studies
of various mycobacterial LAM isolates. Most significantly,
biological differentiation between various LAMs seems to
be imparted by ‘caps’ at the distal extremities (e.g., the
mannoses in 60 and 61).

In addition to tuberculosis and leprosy, LAM has been
associated with a range of health disorders including, aller-
gic asthma,57 herpes,58 cancer,59 bladder cancer,60 and has
even been found to potentiate anti-HIV retrovirals.61 Thus
the multifaceted structure, depicted in cartoons 60 and 61,
is matched by multifarious biological activity.

Could the interrelationship of structure and activity of
these LAM be deconstructed.

The challenge to synthetic organic chemistry is to provide
samples of unquestionable provenance,62 and to appreciate
better the task at hand, cartoons 60 and 61 were rendered
as the 28-mer oligosaccharide 62. The prospects for this
task may be judged from the very recent comments of
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Nigou, a member of the eminent mycobacterial CNRS lab-
oratory in Toulouse, that ‘synthesis of the lipomannan por-
tion (see Scheme 10) can hardly be envisaged’.55

As indicated in Scheme 11, the major disconnection of the
LAM structure 62 coincides with the site where the popular
antituberculosis drug, ethambutol, is thought to operate.
This convenient disconnection gives the lipomannan
(LM) on the ‘right-hand side’ which in turn can be further
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disconnected into mannan and phosphatidyl inositol
mannoside (PIM) domains.

This was a good place to begin, since PIM constitutes a
major intermediate in the biosynthesis of LAM.63
6. First synthesis of Ac3PIM2

The synthetic approach to PIM benefited from the regio-
selective glycosidation studies in Scheme 5a and b. Deben-
zoylation of the 8:1 a/b mixture, pseudotrisaccharide 32,
allowed separation of the pure diastereomer, 63a, and stan-
dard processing of the protecting groups freed the primary
hydroxyl group for fatty acylation leading to 64. Deallyla-
tion followed by phospholipidation, using our time-tested
protocol,38 afforded the triacylated phosphorylated inositol
dimannoside, Ac3PIM2, 65.64
7. First synthesis of a lipomannan (LM)

The ready, succinct route to 65 encouraged us to tackle
the mannan domain of 62. First, an analog of 63 was
required, in which the primary-OHs of both mannosides
were differentiated, the ‘right-hand-one’ (i.e., on O2) needed
for eventual fatty acylation, and the ‘left-hand-one’
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for developing the mannan array. On the basis of trial and
error, NPG 26 (see Scheme 5a) was retained for O2 man-
nosylation, while a 6-O-tritylated NPOE, 66 (Scheme 13a),
proved to be the best candidate for the O6 mannoside.
Sequential glycosidations, followed by processing, as in
Scheme 12, afforded pseudotrisaccharide 69a, and detrity-
lation gave the mono-ol 69b, ready for elaboration of the
mannan domain.

As noted above in connection with Scheme 4, a multi-
branched array, such as that seen in compound 62, nor-
mally requires a shuttle of orthogonal protecting groups
in order to ensure that a single-OH is presented to each
donor at any time. However, the systematic research
related to MATCH, especially the exquisite regioselective
advantage proffered by Yb(OTf)3/NIS summarized in
Scheme 7, suggested a way to avoid many of the protec-
tion/deprotection episodes. In this connection, the preli-
minary studies for the 2,6-mannosidyl diol 48 (Scheme
8b) were paramount, since an excess of an NPOE could
be used to optimize regioselective glycosidation at the
primary-OH, without threatening the secondary-OH.

Accordingly, the NPOE 67 (Scheme 13b) was the donor of
choice since it had two benzoate groups–one formal and
one latent. Glycosidation of 69b therefore afforded the di-
benzoate 70a, in near quantitative yield, and thence diol
70b. Iterative regioselective mannosylation with NPOE
67, followed by saponification led from diol 70b to triol
71a, to tetraol 71b, and thence pentaol 71c, the excellent
yields being maintained throughout.
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All five-OHs of 71c now had to be mannosylated. Trial and
error showed that a trichloroacetimidate would be the best
donor for this purpose, and so donor 68 (prepared from
NPOE 31 as outlined in Scheme 8a), afforded dodecasac-
charide 72 in 86% yield.

The protecting group manipulations that had been tested
for the end game to 65 (Scheme 12), were again successfully
applied to obtain the lipomannan 73.65

The efficiency of the synthetic route in Scheme 14 may be
judged by the fact that one postdoctoral fellow can prepare
300 mg of the dodecasaccharide 72 in 3 weeks, once the
‘considerable systematic research’, of which Paulsen cau-
tioned, had been carried out.
8. The arabinan domain

The arabinan domain of 62 (Scheme 11) possesses furan-
oside units, linked a-1,5-linearly, with occasional O3
branches. Furanoside chemistry was uncharted territory
to us. Unlike pyranosides, furanosides have attracted com-
paratively little attention because they have been isolated
less frequently from nature. However this circumstance
may be due to the fact that furanoses are much less robust,
and thus may not have survived traditional methods of
isolation.

Furanosides are kinetic products in Fischer glycosidations,
and in the case of simple alcohols, such as methanol, good
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yields can be obtained by quenching the reaction at the
opportune stage. We adopted this approach in 1995 for
preparation of n-pentenyl furanosides (Scheme 15a), but
yields of structures such as 74 were never satisfactory.66

Given the successful use of pyranose orthoesters above for
the mannan domain (Scheme 14), we were encouraged to
extend this methodology to the preparation of furanosides.
However, the synthetic procedure depicted in Scheme 3
favors pyranose rings and so would not be applicable for
obtaining furanose orthoesters.

The alternative approach began with methyl arabinofuran-
oside, 75a, which can be readily obtained by Fischer
glycosidation.67 (The material is also commercially avail-
able.) In view of the compound’s acid lability, perbenzoyl-
ation to 75b, was employed to prevent ring expansion
during treatment with HBr to obtain the furanosyl
bromide 75c. Treatment of the latter with lutidine then
afforded orthoester 76a, and thence the corresponding diol
76b.

From this diol, the various donor and acceptor precursors,
for the linear and branched units, could be readily crafted
by the judicious combination of protecting group manipu-
lations coupled with the (now) classical NPOE! NPG
rearrangement, leading to 78–80 (Scheme 15b).

8.1. Linear motifs

The simple procedure for obtaining a linear array, as sum-
marized in Scheme 16, involves, step 1, coupling of 78 with
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77, followed (step 2), by desilylation to obtain 81. Iteration
of steps 1 and 2 then gives compound 82, n being any num-
ber desired.68
8.2. Branched motifs

A strategy for the branched motif was tested using the
chloroacetylated NPOE 76c (Scheme 17) which readily
reacted with 78 to provide two free-OHs in 83. The latter
reacted smoothly with 2 equiv of NPOE 76d to give the
tetrasaccharide 84.

In view of the success of this diglycosidation of 83, we
tested a more elaborate donor. Our preliminary experi-
ments taught us that branched NPG donors such as 84
were not reactive enough. A trichloroacetimidate was the
obvious choice in view of the successes in Scheme 14, but
as noted above, furanosides are extremely acid labile. It
is therefore fortunate that the glycosidic n-pentenyl residue



B. Fraser-Reid et al. / Tetrahedron: Asymmetry 17 (2006) 2449–2463 2461
can be cleaved oxidatively by treatment with NBS in aque-
ous medium. Trichloroacetimidation of the resulting gly-
cose could then proceed routinely to give 85. Notably,
disarmed donors, such as 85, can be prepared and used
at room temperature, whereas the armed counterparts do
not survive at room temperature.

Unfortunately, when diol 83 was presented to 2 equiv of
trichloroacetimidate 85, the major product was 86, there
being very little double glycosidation. This suggested that
the secondary-OH in 86 was too hindered for a complex
donor like 85. The contrast with the successful double
glycosidation leading to 84, taught us that a smaller donor,
such as 76d, must be used to achieve double glycosidation.
In other words, double glycosidation would require two
primary-OHs in the acceptor.69
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Accordingly, the linear trisaccharide 82 (n = 1) was con-
verted into the tetrasaccharide diol 87 (Scheme 18), both
hydroxyl groups of which were glycosidated with donor
77, paving the way to hexafuranan 88 as the acceptor diol
89a (Scheme 19).

For the donor partner, both hydroxyl groups of 79 were
glycosidated with NPOE 77, and desilylation gave product
89a. In the above discussions of cartoons 60 and 61
(Scheme 10), we noted the importance of the mannose caps
for biological activity in M. tuberculosis. Accordingly, the
TBDMS group was removed, 89a! 89b, and mannosyla-
tion with excess NPOE 31, afforded the mannose-capped
n-pentenylated pentasaccharide 90a, and routine process-
ing then afforded trichloroacetimidate 90b. Two equiva-
lents of the latter now coupled readily with acceptor 88
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affording hexadecasaccharide 91a in 74% yield. The usual
steps were then employed to prepare the trichloroacetimi-
date donor 91b.
9. Donor 16 + Acceptor 12 = 28-mer

With the 16-mer donor 91b in hand, we now had to return
to Scheme 14, to prepare a modification of 72 to which the
arabinan moiety, 91b, could be attached. The primary-OH
of its precursor, pentasaccharide 71c, was covered by
tritylation (Scheme 20), and the four secondary-OHs were
then mannosylated, as in Scheme 14, to obtain 92a.
Detritylation then gave the desired dodecasaccharide
acceptor 92b.

Coupling of trichloroacetimidate 91b with acceptor 92b
with Yb(OTf)3 gave �60 mg of the 23-mer 93a (Scheme
21) in 35% yield. The presence of 16 benzoate groups at
all O2 sites on donor 91b provided us with a ready method
to validate product 93a. Thus replacing all benzoates with
benzyls would decrease the mass by 224. The mass spectro-
scopic data in Scheme 21 is in accordance with this
expectation.
10. Summary

Mannopyranose and arabinofuranose n-pentenyl orthoest-
ers (NPOEs) are readily prepared from the parent sugars,
and are easily converted into the related n-pentenyl glyco-
sides and trichloroacetimidates. The latter donors and their
NPOE progenitors are chemoselectively differentiated by
Yb(OTf)3. In addition, the salt combines with N-iodosuc-
cinimide to promote regioselective glycosidation of polyol
acceptors by NPOEs, used in excess so as to optimize
yields. These chemo- and regiopreferences provide a simple
and reliable synthetic strategy that, additionally, is eco-
nomical of time and materials. Thus the 12-mer mannan
91b and 16-mer arabinan, 92b, domains were assembled
in 300 mg and 1 g quantities, respectively, each by one
post-doctoral fellow in less than four weeks using conven-
tional laboratory equipment, on the basis of considerable
prior systematic research. The 28-mer 93 is, as far as
we are aware of, the largest hetero-oligosaccharide
that has been synthesized, slightly larger than Ogawa’s
25-mer.70
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